PKM2 and cancer: The function of PKM2 beyond glycolysis
نویسندگان
چکیده
منابع مشابه
PKM2 and cancer: The function of PKM2 beyond glycolysis
Metabolic reprogramming is a hallmark of cancer cells and is used by cancer cells for growth and survival. Pyruvate kinase muscle isozyme M2 (PKM2) is a limiting glycolytic enzyme that catalyzes the final step in glycolysis, which is key in tumor metabolism and growth. The present review discusses the expression and regulation of PKM2, and reports the dominant role that PKM2 plays in glycolysis...
متن کاملPKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation
Sepsis, severe sepsis and septic shock are the main cause of mortality in non-cardiac intensive care units. Immunometabolism has been linked to sepsis; however, the precise mechanism by which metabolic reprogramming regulates the inflammatory response is unclear. Here we show that aerobic glycolysis contributes to sepsis by modulating inflammasome activation in macrophages. PKM2-mediated glycol...
متن کاملPKM2 in carcinogenesis and oncotherapy
Tumor cell metabolism is characterized by abundant glucose consumption and aerobic glycolysis. And pyruvate kinase M2 (PKM2) plays a decisive role in glycolysis, significantly contributing to the Warburg effect, tumor growth, angiogenesis, cell division, metastasis and apoptosis. To date, researchers have unraveled the potential of pyruvate kinase M2 as an antitumor target, which suggests a new...
متن کاملDual roles of PKM2 in cancer metabolism.
Cancer cells have distinct metabolism that highly depends on glycolysis instead of mitochondrial oxidative phosphorylation alone, known as aerobic glycolysis. Pyruvate kinase (PK), which catalyzes the final step of glycolysis, has emerged as a potential regulator of this metabolic phenotype. Expression of PK type M2 (PKM2) is increased and facilitates lactate production in cancer cells, which d...
متن کاملPKM2, STAT3 and HIF-1α
The M2 isoform of pyruvate kinase, highly expressed in tumor cells, is known to engage a feed forward loop with the glycolysis master transcription factor HIF-1α. Gao and co-authors recently showed that dimeric PKM2 localizes to the nucleus in highly proliferating cancer cells, where it regulates in vivo growth by acting as a protein kinase and directly activating STAT3. STAT3 is therefore a no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Oncology Letters
سال: 2016
ISSN: 1792-1074,1792-1082
DOI: 10.3892/ol.2016.4168